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ABSTRACT 
 
Over the past decade, health care providers have experienced 
increased pressure from consumers, insurers and regulatory 
organizations to demonstrate not only the fact that they 
provide high quality services, but also that they are continually 
working to improve upon the quality of those services.  In 
particular, organizations such as the Joint Commission for the 
Accreditation of American Healthcare Organizations 
(JCAHO) have placed increased emphasis on the use of data-
oriented methods of monitoring and improving an 
organization’s performance.  For many providers, particularly 
small and mid-sized providers, this presents two problems.  
First, small and mid-sized providers often have difficulty 
collecting the data necessary to document their process 
improvement activities.  Secondly, even if these facilities are 
able to collect the appropriate data, a provider’s staff often 
does not have the knowledge to appropriately apply the 
statistical techniques inherent in process improvement.  The 
purpose of this paper is to present a case study that 
demonstrates how firms with limited resources and available 
data can employ some simple statistical techniques to measure 
performance and process improvement. 

 
INTRODUCTION 

 
In many ways, therapy is a science concerned with 
optimal performance.  During each patient encounter, 
the objective is to strive for maximum results, whether 
the task at hand is teaching an 86-year-old stroke 
survivor to walk with a cane or doing passive range of 
motion exercises with patients to prevent contractures. 

But in the pursuit of patient results, it is easy for 
practitioners to lose sight of the effectiveness of our 
own clinical approaches.   As a result, many health care 
organizations are implementing performance 
improvement initiatives to quantify what they do and 
present it in a larger facility-wide context. The 
aggregated data helps practitioners make better clinical 
decisions as well as justify treatment plans. 

Driving this movement further is demand from 
consumers, payers and regulatory agencies to prove 
clinical effectiveness and efficacy.  From the regulatory 
perspective, the Joint Commission on Accreditation of 

Healthcare Organizations (JCAHO) requires health care 
organizations  
to assure quality in the delivery of care.  In addition, 
gaining accreditation from the Commission on 
Accreditation of Rehabilitation Facilities (CARF) 
requires “information and outcomes management 
systems” and the use of comparative data.  These 
movements drive the need to establish baseline 
measurements and then improve upon the processes. 

There are two primary difficulties in measuring 
process improvement within a health care setting.  The 
first is assimilating the data collection process into every 
day patient care tasks.  Since the practitioner’s primary 
objective is to treat his/her patient, therapists are limited 
in the amount of time they can spend collecting data.  As 
a result, the lack of available data makes it difficult for 
facilities to conduct process improvement studies.   

A second critical factor is data analysis.  Many 
clinicians don’t have the statistical skills to analyze 
complex data.  Larger health care facilities can avoid this 
difficulty by adding bio-statisticians to its full-time staff 
or by hiring (part-time) consultants who specialize in 
productivity improvement.  Similarly, teaching and 
research-oriented facilities may have clinicians who are 
trained in statistics and/or management science.  
However, smaller providers may not have the resources 
to hire consultants or attract research-oriented 
practitioners to their staff.  Consequently, if these 
providers are to undertake process improvement studies, 
their staff must be able to complete the study using a set 
of relatively simple statistical tools. 

Given these two difficulties, it becomes 
necessary for small and mid-sized health care providers 
(who are most likely to face data and skill limitations) to 
develop methods of measuring process improvement 
that do not require stringent data requirements or high 
powered statistical skills.  The purpose of this paper is 
present some simple techniques that allow providers to 
measure process improvement given these constraints.  
We employ these techniques using data from a (mid-
sized) Midwestern rehabilitation provider.  As such, this 
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paper can be considered as a case study, whose findings 
may be applicable to a large number of health care 
providers that share both the mission and challenges 
faced by this institute. 

The remainder of this paper proceeds in three 
steps.  First, we describe the study’s database and some 
of the limitations we encountered when using this data.  
Next, we describe some basic statistical techniques that 
we utilized to analyze the data.  We conclude the paper 
by discussing the implications of our findings.  In this 
section we also provide some suggestions for firms who 
face similar data and/or skill limitations.  
 
Data 
 
The data come from a major, nonprofit medical center 
in a medium sized city (with a population of 
approximately 130,000) in the Midwestern United States.  
The city serves as a regional health care center for a 
relatively large (approximately 80 miles in diameter) 
geographic area.  It employs a range of specialized and 
general health care practitioners as well as a wide array of 
medical services, including physical therapy.  The 
provider also experiences competition in almost all of its 
services from another, similarly sized (nonprofit) medical 
center that resides within the same city.  The center 
offers physical therapy services on an inpatient basis at 
its 50 bed, acute care Rehabilitation Institute.  
Outpatient therapy services are offered at one of four 
different locations, which are strategically located 
throughout the city.1  Most therapy sessions averaged 45 
minutes in length, with a few sessions lasting as few as 
30 minutes and as many as 60 minutes.  Outpatients 
received one therapy session per day, while inpatients 
received therapy twice per day.   

The data used in this study consist of all patients 
referred for inpatient physical therapy following total 
knee replacement surgery (TKR) during the fiscal year 
2002.  For each patient, data was collected on three 
different measures (both pre and post therapy) that the 
staff believed most efficiently characterized a patient’s 
rehabilitation progress following TKR: knee extension 
(measured in degrees) while in a supine position and 
knee flexion (again, measured in degrees) in both a 
sitting and a supine position.  The staff’s a priori 
expectations were that, if a patient successfully 
completed rehabilitation following TKR, flexion should 
increase, while extension should decrease.  As a result, 
the staff chose to focus on the difference between the 
pre and post measurements for each of these variables.  
                                                             
1The provider also offers a limited number of outpatient 
physical therapy services at its two assisted living sites.  

For the flexion variables, the difference was created by 
subtracting the pre-TKR measurement from the post 
measurement (i.e. post – pre).  The extension 
measurement was created in a reverse fashion (i.e., pre – 
post).  As a result, a positive value for each of these 
differenced variables indicates an improvement in the 
patient’s condition, while a negative value indicates a 
regression in the patient’s condition. 

The staff also chose to collect data on a fourth 
variable that could potentially impact rehabilitation 
following TKR.  Specifically, the girth of the surgically 
repaired knee was measured (in inches) and compared to 
the girth of the patient’s other (non-invasive) knee.  The 
intuition behind this metric is that, immediately 
following surgery, the repaired knee experiences 
swelling, which may inhibit mobility and retard 
rehabilitation.  Assuming symmetry, the difference 
between the two girth measurements (i.e., the TKR 
measurement – the non-invasive measurement) gives a 
normalized metric of the amount of swelling.  As such, 
the girth difference provides a very rough measure of a 
patient’s initial illness severity.  Patients with a larger 
girth difference would subsequently be expected to take 
longer to heal, and thus require additional therapy.        

Lastly, data was collected on a number of 
supporting variables.  For example, at the conclusion of 
treatment, patients were asked to evaluate their 
perceived pain using a 0 (no pain) to 10 (maximum pain) 
rating scale.  Other data included the physician who 
performed the TKR, the length of stay, age and sex.  A 
total of 122 patients were included in this study; 
however, the staff was not able to collect a complete set 
of information for all patients in the study.  As a result, 
there are some missing values.  Table 1 contains the 
names and definitions of all relevant variables used in 
the analysis, while Table 2 presents some basic 
descriptive statistics for each of these variables.   
 
Statistical Analysis 

Our analysis of the data proceeds in two steps.  Our first 
approach is to analyze the trends in the data using simple 
descriptive statistics, correlations and hypothesis tests.  
This approach is quite useful because of its 
computational ease as well as the fact that most 
practitioners are familiar with these basic tools, and can 
consequently interpret the findings within the context of 
the practice.  A drawback to this approach is that it does 
not always give a clear and concise conclusion about 
whether or not the facility’s production process is 
operating efficiently with respect to patient outcomes.   

Our second approach applies control chart 
theory to the data in an effort to assess the effectiveness 
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of the provider’s rehabilitation process.  The benefit to 
this approach is that it allows the provider to determine 
whether or not there is a fundamental problem with 
their practice methods, which may not be inferred from 
the descriptive statistics.  These charts are also easily 
created using tools such as Microsoft Excel, and can be 
presented in a graphical format which can be interpreted 
quite easily by those with a limited statistical 
background.  However, while control charts are fairly 
easy to read and interpret, creating control charts 
implicitly assumes a more detailed understanding of 
statistical methods.  Additionally, since rehabilitation is a 
fundamentally slow process, the sampling methods used 
to create the control charts may not be directly 
applicable to medical processes.  In this paper, we 
present a brief review of control chart theory, and also 
describe a simple method (again, which can be 
implemented in a “point and click” fashion using a 
spreadsheet application such as Excel) by which one can 
obtain the information necessary to construct the 
control chart2.   

 

Descriptive Statistics and Hypothesis Tests        

Summary statistics for the original data used in this study 
are reported in Table 2.  Of the 122 patients considered 
in the study, 70 percent are female and 30 percent are 
male. The mean age of patients is 70.1 years and the 
average length of stay is 7.6, with thirteen different 
physicians performing the knee replacement 
procedures3.  The pre-treatment and post-treatment 
mean values of the three process performance measures 
are significantly different and in each case the difference 
coincides with performance improvement (see Table 3).  
On average, patients reduced extension by about 4.5 
degrees and gained 22 and 25 degrees of additional 
sitting and supine flexion, respectively.   

                                                             
2 In what follows, we assume that the reader is familiar with 
the tools in a spreadsheet application such as Excel.  As 
such, we will focus primarily on the steps in the application, 
and give secondary emphasis to the actual Excel commands 
and applications used to undertake the analysis.  For those 
readers who are familiar with control chart theory, one may 
want to only briefly skim pages 9-13 of the manuscript, 
which review this theory.  Normally, we would place such 
information in the appendix of the paper.  However, because 
one of the premises of this paper is to explain as well as 
implement some techniques commonly used in process 
improvement, we felt that it would be more beneficial to 
leave this information in the body of the paper.   
3 Of the 122 patients and 13 physicians, 100 of the patients 
were treated by only 5 of the physicians.   

The average amount of girth difference in the 
data set is 3.6 inches, which is also statistically different 
from zero.  It is important to note that there is some 
ambiguity concerning the minimum amount of swelling 
necessary to limit mobility.  For example, a one-inch 
increase in knee girth may or may not be enough 
swelling to restrict mobility, and thus reduce the 
effectiveness of therapy.  However, one can demonstrate 
that (at a 95% level of confidence) our average girth 
difference of 3.6 is statistically different from any 
postulated value less than three.  So if three inches of 
swelling or less is enough to retard mobility, then we are 
95% sure that, on average, patients are experiencing 
reduced mobility due to post-TKR swelling.    

Examination of Table 2 also shows that the 
variances of the performance measures decreased 
between the pre-treatment and post-treatment situations.  
From a process-review perspective, these results are 
encouraging because they show that not only are patients 
improving after completing rehabilitation, but the 
dispersion among patients is also decreasing.  That is, 
the patients are becoming more similar, and are 
(hopefully) experiencing a baseline range of motion and 
flexibility that are commensurate with a healthy, normal 
lifestyle.  

Given the fact that three different process 
measures were utilized, and that each of the measures 
indicated patient improvement during rehabilitation, it 
also becomes interesting to examine correlations across 
these measures, which are contained in Table 4.  Because 
our girth measurement may impact the effectiveness of 
rehabilitation, Table 4 also presents correlations between 
our girth and process improvement measures.  
Correlations varied among the performance measures 
between the pre-treatment and post-treatment 
conditions, although most of the results agree with 
conventional wisdom. Test results from the pre-
treatment data indicate a strong negative correlation 
between supine flexion and supine extension, and a 
strong positive correlation between supine flexion and 
sitting flexion.  These results make sense, particularly 
since (pre-rehabilitation) lower (greater) flexion and 
greater (lower) extension both coincide with a more 
(less) severe loss of motion.  Additionally, while taken in 
different positions, the flexion measurements essentially 
measure much the same thing, and so should be 
positively correlated.  In the post-treatment data, the test 
results also indicate a strong positive correlation between 
supine flexion and sitting flexion.  Additionally, the post-
treatment data showed a negative correlation between 
TKRGirth and the two flexion measures.  This supports 
our a priori expectation that an increase in knee girth 
reduces therapy effectiveness.   
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We were also interested in determining whether 
there was a significant relationship between our 
(differenced) mobility and girth measures and our 
demographic variables.  Tables 5 – 9 of the paper 
present some frequency tables4 (with corresponding chi-
square tests of independence) that address this issue5.  
Examining Tables 5 – 7, we find no significant evidence 
that our age, sex and physician variables are related to 
any of our four process variables.  Not only are the 
frequencies evenly distributed throughout all of the 
categories, but the chi-square probabilities are all very 
high, indicating that we fail to reject the null hypothesis 
of independence (i.e., no significant relationship) 
between these variables.  However, in Tables 8 and 9, we 
see that the length of stay is positively and significantly 
related to a patient’s improvement in flexibility6.  The 

                                                             
4 Tables 5 – 9 present absolute frequencies.  For readers 
who prefer to read and interpret relative frequencies, we 
have re-created these tables in a relative frequency format 
and placed them in the appendix of this paper. 
5 Our primary intent is merely to express, in a simple, 
complete and concise framework, some of the trends 
inherent in the data.  As a result, our discussion focuses 
primarily on the trends in each of the frequency tables.  We 
provide the chi-square statistic solely as a tangential piece of 
information to confirm or deny whether the results are 
significant.  The chi-square tests operate under the null 
hypothesis of no relationship (or “independence”) between 
the two variables of interest.  Concomitantly, rejecting the 
null hypothesis is evidence that the two variables are 
significantly related.  The test is one sided, with an upper 
bound, so that larger chi-square tests statistic values (and 
hence probability values below .05) would lead us to reject 
the null hypothesis (at a 95% level of confidence).  For 
more information about the chi-square test of independence, 
see Anderson et al (2002) or Aczel (2002).  Also note that 
we could have examined these trends on a marginal basis 
through the use of regression analysis.  However, we chose 
not to utilize this approach because there are certainly other 
exogenous factors besides age, sex, physician, length of stay 
and perceived pain that influence our variables of interest.  
As such, it is inappropriate to utilize regression analysis 
because omitted variables would bias the results.  
Additionally, since one of our goals is to analyze the data in 
a simple, yet efficient manner, we felt that frequency tables 
would tell much the same story, yet do so in a much simpler 
manner.   
6 A technical aspect of the chi-square test should be noted 
here.  Several of the entries in each of the frequency tables 
for the number of sessions contain values of two or less.  
This may artificially inflate the chi-square statistic so that 
the results appear to be significant, even though they are 
not.  We checked for this possibility (by pooling categories 
so that there are very few entries with small frequencies and 

trends in the table indicate that patients who completed 
a smaller length of stay (and hence a smaller number of 
therapy sessions) also increased their flexibility (whether 
in a supine or sitting position) by a smaller amount.  
Additionally, we see that patients with lower pain scores 
also exhibited a significantly greater increase in supine 
flexibility.  These last two results are intuitive, because 
they indicate (but do not necessarily prove) that patients 
who work harder at rehabilitation make more progress in 
gaining flexibility.  And as individuals gain greater 
flexibility and range of motion, they are able to 
rehabilitate, and so experience less pain from the knee 
injury.       

Control Chart Analysis – A Brief Introduction 
As mentioned earlier, descriptive statistics and basic 
hypothesis tests are quite useful in determining whether 
a production process is operating efficiently because they 
are relatively simple to implement and provide results 
that are easily interpreted (particularly by those with a 
limited statistical background) within the context of the 
practice.  However, a drawback is that these methods 
may not provide a complete characterization of a firm’s 
production process.  As such, we turn to a slightly more 
technical alternative known as statistical process (or 
quality) control. 
 Statistical process control refers to the use of 
statistical techniques to detect changes in process 
performance and to identify assignable (special) causes 
of variation in process performance. By process we 
mean operations or a combination of procedures 
through which inputs are used to attain desired 
outcomes. Processes are typically repetitive and the 
outcomes can be measured and recorded. Control is 
defined as a feedback loop based on the following steps: 
(1) establishment of a standard, (2) measurement of 
actual performance, (3) comparison of actual 
performance with some standard, and (4) corrective 
action, if needed, addressing the discrepancy between 
actual and the standard (Alwan, 2000).  In general, 
process control, therefore, can be defined as these steps 
when applied to a measurable process outcome. In this 
paper the process under consideration is the 
effectiveness of inpatient physical therapy on patients 
following TKR. 

                                                                                                       
re-calculating the statistic) and did not find it to be a 
significant concern.  Also, note that test statistic inflation is 
only a concern if we reject the null hypothesis (i.e., for the 
sessions variable), because if the test statistic is inflated, and 
we still fail to reject the null hypothesis, then we would also 
fail to reject it even if the test statistic were not inflated. 
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 An underlying premise of statistical process 
control is that processes exhibit variability.  Generally, 
this variability is assigned to one of two causes: random 
causes or assignable causes.  Variation due to random causes 
reflects the natural variation inherent in every process.  
However, variation due to assignable causes can often be 
traced to some identifiable source or event.  In this 
context, the main objective of statistical process control 
is to determine whether variations in process 
performance are due to assignable causes or to random 
causes.  Whenever assignable causes are detected, the 
process is deemed to be out of control. Under such 
circumstances corrective action will be taken to bring the 
process back in line with an acceptable level of quality. 

The primary focus in control chart applications 
is the detection of change in the level and/or dispersion 
of the process under investigation. The established 
convention is to construct two control charts, one to 
monitor the level of the process (often referred to as an 
x  chart) and the other to monitor the dispersion of the 
process (known as an R  chart). These charts are used to 
analyze and monitor individual measurements on a 
quality characteristic or on subgroups or samples taken 
on the quality characteristic.  A starting point in standard 
control chart applications is that the quality 
characteristic, denoted by ,X is a random variable with a 
population mean µ  and standard deviation σ .  Using 
standard statistical sampling theory, on could collect a 
random sample, or subgroup, of n  observations on the 

characteristic X.  Denote the subgroup mean as X .  
Statistical theory shows that the sampling distribution of 
X  has an expected value of µ  and a standard deviation 

.nX σσ =   Given general assumptions about n, the 

central limit theorem can be applied to subgroup means 
and be used to show that the sampling distribution of X  
is normal.  As a result, one can use information from the 
random sample to build a confidence interval estimate 
around the population mean, µ.  For example, the two-
sided, 99.72% confidence interval is given by the 
following upper and lower bounds (or control limits):   

Upper Control Limit 
n

UCL σ
µ 3)( +=    (1) 

Lower Control Limit 
n

LCL σ
µ 3)( −=    (2) 

 The connection between a confidence interval 
and statistical process control lies in the interpretation of 
the confidence interval.  If a process is “in control”, or 
operating efficiently, then any variation in the outcomes 
of that process must be due to randomness.  If that is 
the case, then (using the confidence interval above) we 

are 99.72% sure all outcomes from the production 
process fall within the confidence interval.  However, if 
the production process is inefficient, then there is some 
assignable cause (i.e., inefficiency) that increases 
outcome variation, and thus causes the process’ 
outcomes to lie outside of the confidence interval.  
Statistical control is the process of building these 
confidence intervals and examining them to determine 
whether or not the data are contained within the 
confidence interval.  Most often, this is accomplished by 
creating a graph which shows every data point and its 
relation to the center line and each control limit.  This 
graph is referred to as the control chart.  
 Since µ  and  )or (

X
σσ are generally 

unknown, they have to be estimated.  So denoting the 
estimates for µ  and 

Xσ  as µ̂  and 
Xσ̂  respectively, the 

empirical control limits become 

XUCL σµ ˆ3ˆ +≅     (3) 

XLCL σµ ˆ3ˆ −≅      (4)
  
In a production setting, these estimates are most 
commonly obtained through repeated random sampling.  
That is, one collects a random sample of size n, and uses 
that sample to calculate the sample mean, x .  This 
process is repeated m – 1 times.  As a result, we are left 
with a collection of m sample means: mxxx ,,, 21 … .  The 

estimate for µ (which is also sometimes denoted as x ) 
is then calculated as the average of these m values: 

m

x
x

m

i
i∑

== 1
                  (5) 

This overall average x is referred to as the grand mean or 
the grand average. 

While there are several possible means through 
which the standard deviation of the sampling 
distribution can be estimated, the most common 
approach is to calculate the grand range. As one might 
infer, the grand range is calculated in a manner similar to 
the grand average.  Specifically, one collects a random 
sample of size n, and uses that sample to calculate the 
sample range, R.  This process is repeated m – 1 times.  
As a result, we are left with a collection of m sample 
ranges: mRRR ,,, 21 … .  The grand range is then 
calculated as the average of these m values: 
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m

R
R

m

i
i∑

== 1
     (6) 

Statistical theory has shown that if R is multiplied by a 
factor, called ,2A which is a function of the subgroup 

size ,n  then a reasonable estimate of the term nσ3  
found in (1) and (2) can be obtained7.  Based on the 
above, the center-line (CL, or the estimate for the 
population mean) and control limits for the x  chart for 
subgroup means are: 
 

RAxUCL 2+=      (7) 

xCL =        (8) 

RAxLCL 2−=      (9) 
The x  chart focuses on detecting average 

changes in the process level.  If one were interested in 
looking at process control from a variability standpoint, 
one could employ an R chart.  The idea behind an R 
chart is virtually identical to that of a x chart, except now 
we are building the confidence interval in terms of 
dispersion, instead of averages.  The centerline and 
control limits of the R  chart are as follows: 

 

RDUCL 4=     (10) 

RCL =       (11) 

RDLCL 3=     (12) 
where 3D  and 4D  are general constants based on 
number of observations in the sample used to determine 
the range.  As with the constant A, most statistics and 
operations management textbooks contain tables 
whereby, if one has information on the sample size, n, 
the constants D3 and D4 can be obtained from those 
tables.  

Control Charts – Technical Issues in Health Care 
When employing control charts to measure process 
control, there are a number of technical concerns that 
must be addressed, particularly when employing these 
techniques in health care.  First, one must determine an 
appropriate sample size (n) as well as an appropriate 

                                                             
7 Statistical tables have been created that give the value of A 
for every possible sample size.  These tables can be found in 
most introductory statistics and operations management 
textbooks. 

number of re-samplings (m).  Aquilano et al (1995) 
suggest a sample size of 4 or 5 observations, and also 
suggest that at least 25 re-samplings should be utilized.  
Based on these guidelines, we chose to employ a sample 
size of 5 and a re-sampling size of 35. 
 An additional issue of concern when applying 
control chart theories in health care, and particularly in 
rehabilitation studies, is that the production process is 
very slow.  In manufacturing or other related industries, 
it is not uncommon to produce hundreds or thousands 
of finished products per day.  As such, it is relatively easy 
to collect a sample of n = 5 units, and then repeat this 
process n = 25 times, where each re-sampling 
constitutes a different “batch” or finished products (i.e., 
there is sampling without replacement).  But rehabilitation 
is a lengthy process, where it may take weeks, or even 
months to create a finished product (i.e., rehabilitate an 
individual’s injury).  For example, this mid-sized 
provider completed only 122 inpatient TKR 
rehabilitations over an entire fiscal year.  In these cases, 
it is unclear as to how to implement the re-sampling 
process.  Our approach is to randomly select 5 
individuals with replacement from the 122 in the data set.  
As a result, we randomly draw 5 individuals from the 
data set (for a given variable), find the sample average 
and sample range, and then place these individuals back 
into the data set before moving on to the next sampling.  
The benefit of this approach is that it allows us a reliable 
means to conduct the random re-sampling for the 
control chart analysis.  The cost is that individuals may 
be collected and placed in multiple samples.  Given that 
we are using the sample to find means and ranges, this 
should not substantially affect our results8.  We repeat 

                                                             
8 Several comments are in order here.  First, random 
sampling with replacement is commonly used in situations 
where one attempts to collect a random sample from a small 
population or a very slow production process (Anderson et 
al, 2002).  As a result, our approach is not without 
precedent.  Second, most spreadsheet packages have built in 
applications that randomly select a sample (whether with or 
without replacement) from a data set.  In our case, we used 
the “Sampling” option in Excel’s Analysis Tool Pack 
macro.  Third, there are alternative methodologies that have 
been used to perform control chart analyses of slow 
production processes.  For example, Aczel (2002) provides 
a very brief discussion of how to use individual data, as 
opposed to sample average and ranges, to construct control 
charts.  However, many of these approaches (including the 
one presented by Aczel) are ad hoc, and employ very 
unrealistic assumptions, particularly when calculating the 
control limits.  We chose this approach because we believed 
it provided a method of collecting the data that was reliable, 
and could be easily implemented by practitioners.  Lastly, 
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this process separately for each of our four process 
improvement variables.  As a result, the control charts 
implicitly assume that these four factors are separate 
phenomenon9.     

Applying Control Charts to the Rehabilitation Data 
Since all of the outcome indicators exhibit significant 
improvement after the physical therapy sessions, the 
control chart applications in this study examine process 
performance in terms of the difference between 
admission and discharge measurements for each of the 
indicators. In particular, our focus will be to identify the 
random sources of variation in process performance and 
to use those results to determine benchmarks for future 
performance.   

Given the fact that our girth measurement was 
significantly correlated with our process improvement 
measures, it is also of interest to build control charts for 
our girth variable.  However, our interpretation of the 
latter is slightly different than for our three outcome 
variables.  Specifically, while excess variation in the girth 
measurement is indicative of an “out-of-control” 
process, it is not a process that is directly under the 
control of the facility’s staff.  Instead, it represents 
excess variability in an initial condition, which the staff 
must subsequently deal with.  As such, it is still of 
interest to know if the girth difference is out of control, 
and staff may want to adjust their practices in 
accordance with the results.     
 Our initial step is to study the variability of the 
impacts associated with the inpatient physical therapy 
sessions. To do so, we construct x  and R charts for 
each of the three performance indicators measured in 
terms of the difference between the pre-treatment and 
post-treatment data values, as described earlier in this 
paper.  We also construct these same charts using the 
girth difference variable.  The charts are based on the 
values associated with 35 randomly selected subgroups, 
each of size 5=n .  In order to determine whether there 
is a shift in the process mean, the x  chart is constructed 

                                                                                                       
because our data set (122 observations) is very large in 
comparison to the size of the sample we are selecting (5 
observations) and the number of re-samplings (35), random 
sampling with replacement should not noticeably impact our 
results, since one would expect (but could not guarantee) 
that each data point would be drawn only 1 or 2 times.      
9 Note that, if one wanted to account for the possibility of an 
inter-relationship between these four variables, one could 
use a multivariate control chart (Alwan 2000).  Since 
multivariate control charts are much more complicated than 
their univariate counterparts, we employ the latter for 
simplicity. 

based on (7), (8) and (9) for each of the four variables.  
With subgroup size ,5=n 114.11=R , 

,074.4=x and ,577.02 =A the centerline and control 
limits for the supine extension x  chart are: 

UCL = 4.074 + 0.577*11.114 = 10.487 
CL = 4.074 

LCL = 4.074 - 0.577*11.114 = -2.338 
The corresponding x chart, which is a sequence plot of 
the subgroup means with the control limits 
superimposed, is shown in Figure 1. The control chart 
shows that the subgroup means vary well within the 
limits with no strong indications of special causes. Based 
on this finding, the subgroup means are in a state of 
statistical control for supine extension improvement, and 
the retrospective limits can be projected out for 
prospective control.   

Using the data for the subgroups on supine 
extension, we are also able to calculate the bounds of the 
R-chart.  For subgroup size ,5=n the values of 3D  and 

4D  are 0 and 2.114, respectively. Using  (10) - (12), we 
include the centerline and compute the control limits for 
the supine extension difference R  chart as: 

UCL = 2.114*11.114 = 23.496 
CL = 11.114 

LCL = 0*11.114 = 0 
The R chart shown in Figure 2 indicates that 
approximately 54 percent of the supine extension 
difference values are above the center line, while all 35 
data points fall within the upper and lower control limits. 
In addition, there is no evidence of a sustained shift in 
the dispersion of measurements of the change in supine 
extension between admission and discharge from a 
stable process mean.   

R and x  charts constructed for two of the other 
performance measures, namely, changes in supine 
flexion and in sitting flexion also indicate that the all data 
points vary within the relevant control limits, as 
evidenced by Figures 3-6.  Additionally, the data are 
clustered relatively evenly around the center line, with 
approximately half of the data values above and below 
each center line, respectively.  As such, the control 
charts indicate that the flexion variables are also in a 
state of statistical control. 
 However, the R and x  charts for the girth 
difference (Figures 7 and 8) indicate a number of out-of-
control points that are candidates as special-cause 
signals.  Thus, the preliminary indication is that the 
process is out of control, and so the staff is treating 
patients whose girth measurements (and hence knee 
swelling after TKR) is significantly different than the 
norm.  An examination of these out-of-control signals 
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showed that they arose from the same subgroup data 
points (3rd, 24th, 32nd) in both the R and x  charts.  
Moreover, a review of the within-subgroup observations 
for those data points indicated that the source of the 
process variability was due to a single, isolated outlier 
that (negatively) distorted both the mean and the range 
in each of these subgroups.10   The out-of-control 
subgroups were subsequently discarded and the limits 
and centerlines for the R and x  charts were recomputed. 
Inspection of the revised control charts (Figures 9 and 
10) indicate that, without the presence of these 3 
subgroup data points, the girth performance measure is 
in a state of statistical control. 

Up to this point, control charts have been used 
retrospectively, in the sense of looking back on the 
performance of the physical therapy treatments.  Based 
on the analysis, the process is found to be in statistical 
control for the various performance indicators. 
Consequently, these control limits can also be used to 
project into the future so that the process can be 
monitored and appropriately adjusted to ensure that the 
process can be maintained in a state of statistical control.  
That is, over time, as the practitioners increase the size 
of the existing data set, they can repeat the above 
analysis to continually check to see if the process is 
operating efficiently.   

The use of control charts as a means of assuring 
quality standards and performance improvement 
generates added challenges for decision-makers. One set 
of challenges is related to control chart maintenance.  In 
particular, because processes evolve over time, control 
limits established using historical data eventually become 
obsolete, and must be revised.  As such, the staff must 
use logic and experience to determine how often these 
revisions take place.  One important factor in this 
decision is whether there have been any discernible 
changes in process performance.  For example, if the 
staff changed its methods of providing care in a way that 
reduced process variability, control limits would need to 
be revised to reflect the new process realities.  As a 
general rule it is also good practice to consider 
characteristics such as the speed of the production 
process when determining the frequency of control limit 
revisions. 

Evaluation of Future Process Performance 
A key challenge in process evaluation is to 

determine whether future variability in performance is 
                                                             
10 As a follow-up, a process investigation is necessary to 
determine the root cause of the outlier and to decide whether 
any process changes are warranted. 

due to random or assignable causes. There is interest, 
therefore, in extending control chart theory to create 
process capability intervals for a random process.  In this 
section we explore the construction of process capability 
intervals based on the idea that a random process occurs 
with a certain probability.   

The primary difference between process control 
and process capability is how one defines (and 
interprets) the acceptable upper and lower limits of the 
process.  Process control uses a confidence interval 
approach to define the upper and lower limits, and 
interprets the results in the context of actual process 
performance.  Alternatively, process capability examines 
how well a process performs in relation to limits that are 
constructed based on an organization’s goals, customer 
feedback, industry standards or benchmarks.  That is, 
process capability establishes limits based not on actual 
performance, but how well the process should be 
performing.  It is possible that process capability (or lack 
of) does not imply statistical behavior in terms of being 
in control or out of control, particularly if the process 
capability limits are larger than the control limits.  In that 
case, for example, a process can be within the capability 
limits but not necessarily within control limits.  The 
alternative, of course, is where the capability limits are 
more restrictive than the control limits.  In this case, a 
process can be in control but not within the capability 
limits.  In either event, the worse case scenario would be 
where a process is neither in control nor capable. This 
would call for immediate steps to stabilize and improve 
the process by identifying and eliminating the effects of 
underlying special causes. 

A prerequisite for conducting process capability 
analyses is that process behavior, at least historically, is 
in a state of statistical control, so that special causes are 
not detected from past control charts and process 
behavior is random.  Given that process outcomes are 
normally distributed, lower specification limits (LSL) and 
upper specification limits (USL), represent intervals 
within which observed outcomes are likely to fall due to 
random causes. Thus, given a relatively small 
probability,α , the following statement can be made: 
there is a )1( α− probability that an observed process 
outcome will randomly fall within the specified limits. 
Within this framework, a major purpose of process 
capability analysis is to monitor process performance in 
relation to desirable outcomes and to determine the 
likelihood that the process can meet certain quality 
requirements.  Therefore, by estimating the specification 
limits and discussing the results in terms of probabilities 
(as opposed to actualities), process capability analyses 
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provide a basis for making predictions about future 
performance.  

In the context of this paper, the specification 
limits for a performance measure is the confidence 

interval xzx σα ˆ2±  where )1( α− is the confidence 

coefficient and 2αz is the z value providing an area 

2α in the upper tail of the standard normal probability 
distribution. The idea behind process capability is that 
the staff uses its goals, experiences and common sense 
to pick a value for α, which in turn determines the z 
value and the upper and lower limits of the confidence 
interval.  Then one collects data and examines the 
proportion of data values that fall within the confidence 
interval.  If this proportion is greater than or equal to 
than 1 - α, the process is within its capabilities.  
However, if this is not the case, then the process needs 
to be adjusted.  

As with standard control charts, we need to 
establish a means of estimating the bounds of the 
confidence interval.  Statistical theory shows that the 
following formulas can be applied to generate these 
bounds: 
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Similarly, if one wanted to compute the process 
capability equivalent of the R chart, the estimated limits 
are given by: 
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where 2d = 2.326 for a subgroup size of 5=n  and 
pairs of values for 
 
 ),,( 975.0025.0 DD ),,( 995.0005.0 DD ),( 999.0001.0 DD for 

103 ≤≤ n are given as 
 
 )48.5,37.0(),89.4,55.0(),20.4,85.0(  respectively. 

 
Table 10 provides and example of control limit 

estimates and specification limits for the four variables 
used in this paper, given α = 0.002.  Inspection of Table 
10 indicates that the use of specification limits narrows 
the boundaries for evaluating future performance.  
However, all data points for each of the three 

performance measures are well within the upper and 
lower bounds.  Thus, the proportion of data within the 
bounds is one which is greater than 1 - α = 0.998.  
Therefore, the processes are also in capability control. 

It is important to note that the control chart 
application used in this paper has some limitations that 
are found in standard subgroup charts.  There is the 
danger that basing the analysis only on subgroup 
statistics lead to control limits being too wide or too 
narrow since the control limits are based only on within-
subgroup variation. Therefore, it is important to check 
whether within-subgroup variation is significantly 
different from the between-subgroup variation. The 
typical cause of this inconsistency is the presence of 
nonrandom variability within the subgroups, which can 
only be discovered through an analysis of the individual 
observations.  

 
Conclusions and Suggestions for Facilities with 
Similar Problems 

The focus of this paper is to present a case study that 
demonstrates how firms with limited resources and 
available data can employ some simple statistical 
techniques to measure performance and process 
improvement.  We focus on the use of statistical process 
control charts and nonparametric tests to determine 
whether past performance was in control, and also to 
identify some potential areas for improvement.  We 
implemented these tools using data from a Midwestern 
rehabilitation provider, and tracked the progress of 
patients who received physical therapy after inpatient, 
total knee replacement surgery (TKR).  Control chart 
applications related to four measures of performance 
demonstrated that the rehabilitation process was largely 
effective in terms of providing quality care.  Given the 
in-control characteristics of these performance measures, 
probability limits were generated based on estimates of 
the process mean and standard deviation to provide 
benchmarks for evaluating future performance. 

Based on the methods and results of this paper, 
a set of procedures is suggested for the ongoing 
evaluation of physical therapy treatments of patients 
who undergo total knee replacement surgery (TKR).  
First, rehabilitation units that provide physical therapy 
services need to gather relevant information to track 
outcomes using a standardized data collection process. A 
critical consideration is to make the data collection 
process integral to the treatment session and to the 
evaluation of rehabilitation progress.  The benefit of this 
approach is that the staff can easily retrieve and 
aggregate data without having to go back to do extensive 
chart reviews at another time.  However, implementing 
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this type of arrangement requires effective 
communication with the staff involved in the treatment 
sessions.  That is, the staff needs to be informed about 
the purpose and the scope of the data collection process.  
In addition, focusing on the long-term benefits to 
patients and to the success of the organization can help 
provide greater understanding of the need for these 
efforts. Staff training can also be very useful.  The 
formation of a performance improvement team, which 
acts as a resource and training unit, allows for consistent 
administration of the data collection instruments.  The 
data then needs to be compiled regularly (e.g. quarterly) 
and the results shared at departmental meetings.  

A critical success factor, which can be a 
stumbling block for many facilities, is data analysis.  
Practitioners at small or mid-sized institutions who do 
not have access to an on-site data analyst may have to 
find creative methods of analyzing the data.  One 
possibility is to analyze the data using some simple, yet 
powerful statistical tools that can be employed by the 
practitioners themselves.  Another possibility is that 
there may be faculty in local universities who specialize 
in applied statistical analysis, and might be interested in 
assisting the staff with the data analysis. The appeal to a 
faculty member would be the potential for publishing 
research papers and working on community service 
projects that are consistent with the university’s mission.      
 As clinicians, it is easy to lose sight of the larger 
picture in the daily tasks of helping patients achieve their 
functional goals.  But by undertaking performance and 
quality improvement studies, it is possible to create 
benchmarks that can be used to highlight strengths and 
weaknesses.  And by acting to correct those weaknesses 
and improve upon those strengths, it is possible to 
continually provide optimal, and efficient care.    
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TABLE 1: Variable Definitions 

Variable Definition 

NIGirth  Girth measurement (in inches) for a patient’s non-invasive knee. 

TKRGirth Girth measurement (in inches) for a patient’s surgically repaired knee. 
 
DifGirth Difference between the TKRGirth and the NIGirth measurements. 
 
PreSupExt Supine extension measurement (in degrees) upon admission to therapy. 
 
PostSupExt Supine extension measurement (in degrees) upon completion of  therapy. 
 
DifSupExt Difference between pre and post-therapy extension measurements. 
 
PreSupFlex Supine flexion measurement (in degrees) upon admission to therapy. 
 
PostSupFlex Supine flexion measurement (in degrees) upon completion of  therapy. 
 
DifSupFlex Difference between post and pre-therapy supine flexion measurements. 
 
PreSitFlex Sitting flexion measurement (in degrees) upon admission to therapy. 
 
PostSitFlex Sitting flexion measurement (in degrees) upon completion of therapy. 
 
DifSitFlex Difference between post and pre-therapy sitting flexion measurements. 

Phys            Proxy variable indicating the physician who performed the TKR.  

Sex            Takes a value of 1 if the subject is female and 0 if the subject is male. 
 
Age            The age of each patient (in years). 
 
DCscore  Patient pain perception score upon exiting treatment. 
 
Los  The length of stay for each patient. 
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TABLE 2a: Descriptive Statistics 

Variable          Mean         Standard Deviation          Number of Observations   
 

NIGirth    42.26  4.56   109 

TKRGirth   45.96  5.15   114 

DifGirth   3.60  3.52   106    

PreSupExt   8.31  4.98   121 

PostSupExt   3.73  3.76   122 

DifSupExt   4.59  4.44   121 

PreSupFlex   64.57  16.07   121 

PostSupFlex   89.97  10.56   122 

DifSupFlex   25.26  13.49   121 

PreSitFlex   70.99  13.17   122 

PostSitFlex   93.00  10.20   122 

DifSitFlex   22.01  10.04   122 

Sex              0.70  0.46   122 

Age              70.14  8.72   122 

DCscore    2.87  2.10   118 

Los    7.61  3.43   122 

                  

TABLE 2b: Frequency Table for Physicians 

MD Indicator  Frequency of TKR’s 

A    32 

B    24 

C    13 

D    18 

E    13 

All Others    22 
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TABLE 3: T-Tests for Significance of the Difference Variables 

 
Variable              Mean         Standard Error         T-Ratio    Prob. 

DifGirth   3.60  0.342  10.52      0.000   

DifSupExt   4.59  0.404  11.36        0.000   

DifSupFlex   25.26  1.23  20.60        0.000   

DifSitFlex   22.01  0.909  24.21        0.000 
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TABLE 4: Paired Sample Pearson Correlations 

 
Variable 1 Variable 2     Pearson Correlation      Prob. No. Observations 

NIGirth  TKRGirth 0.730      0.000  106 

PreSupExt PostSupExt 0.515      0.000  121 

PreSupFlex PostSupFlex 0.553      0.000  121 

PreSitFlex PostSitFlex 0.657      0.000  122  

NIGirth  PreSupExt 0.053      0.583  108 

NIGirth  PreSupFlex 0.038      0.694  108 

NIGirth  PreSitFlex 0.058      0.548  109 

TKRGirth PreSupExt 0.090      0.340  114 

TKRGirth PreSupFlex -0.030      0.749  113 

TKRGirth PreSitFlex -0.077      0.418  114 

PreSupExt PreSupFlex -0.287      0.001  120 

PreSupExt PreSitFlex -0.120      0.188  121 

PreSupFlex PreSitFlex 0.745      0.000  121 

NIGirth  PostSupExt 0.053      0.581  109 

NIGirth  PostSupFlex -0.090      0.351  109 

NIGirth  PostSitFlex -0.076      0.431  109 

TKRGirth PostSupExt -0.019      0.844  114 

TKRGirth PostSupFlex -0.187      0.046  114 

TKRGirth PostSitFlex -0.196      0.037  114 

PostSupExt PostSupFlex -0.088      0.337  122 

PostSupExt PostSitFlex -0.060      0.511  122 

PostSupFlex PostSitFlex 0.887      0.000  122  
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TABLE 5: Frequency Tables for the Age Variable and the Outcome Variables 

   Age    

  under 60 60's 70's 80+ Total 

 0 or negative 1 9 2 0 12 

Girth 0.1 - 2.99 inches 3 5 14 4 26 

Difference 3.0 - 4.99 inches 4 9 11 6 30 

 5.0 + inches 5 12 17 4 38 

 Total 13 35 44 14 106 

       

Chi-Square Statistic 14.159     

Probability  0.117     

       

   Age    

  under 60 60's 70's 80+ Total 

Sitting < 15 Degrees 2 12 9 5 28 

Flexion 15-29 Degrees 10 18 30 9 67 

Difference 30+ Degrees 3 7 14 3 27 

 Total 15 37 53 17 122 

       

Chi-Square Statistic 4.665     

Probability  0.587     

       

   Age    

  under 60 60's 70's 80+ Total 

 <= 0 Degrees 4 2 13 5 24 

Supine 1 - 4 Degrees 5 16 13 4 38 

Extension 5 - 8 Degrees 2 12 19 3 36 

Difference 9+ Degrees 4 7 7 5 23 

 Total 15 37 52 17 121 

       

Chi-Square Statistic 13.770     

Probability  0.131     

       

   Age    

  under 60 60's 70's 80+ Total 

Supine < 15 Degrees 2 9 10 2 23 

Flexibion 15-29 Degrees 11 17 24 8 60 

Difference 30+ Degrees 2 11 19 6 38 

 Total 15 37 53 16 121 

       

Chi-Square Statistic 5.28     

Probability  0.508     
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TABLE 6: Frequency Tables for the Sex Variable and the Outcome Variables 
 

   Sex  
  Female Male Total 
 0 or negative 9 3 12 
Girth 0.1 - 2.99 inches 21 5 26 
Difference 3.0 - 4.99 inches 18 12 30 
 5.0 + inches 29 9 38 
 Total 77 29 106 
     
Chi-Square Statistic 3.568   
Probability  0.312   
     
   Sex  
  Female Male Total 
Sitting < 15 Degrees 21 7 28 
Flexion 15-29 Degrees 43 24 67 
Difference 30+ Degrees 22 5 27 
 Total 86 36 122 
     
Chi-Square Statistic 3.125   
Probability  0.21   
     
   Sex  
  Female Male Total 
 <= 0 Degrees 18 6 24 
Supine 1 - 4 Degrees 25 13 38 
Extension 5 - 8 Degrees 27 9 36 
Difference 9+ Degrees 15 8 23 
 Total 85 36 121 
     
Chi-Square Statistic 1.288   
Probability  0.732   
     
   Sex  
  Female Male Total 
Supine < 15 Degrees 18 5 23 
Flexion 15-29 Degrees 43 17 60 
Difference 30+ Degrees 24 14 38 
 Total 85 36 121 
     
Chi-Square Statistic 1.678   
Probability  0.432   
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TABLE 7: Frequency Tables for the Physician Variable and the Outcome Variables  
 

   Physician     
  A B C D E Others Total 
 0 or negative 1 3 1 2 3 2 12 
Girth 0.1 - 2.99 inches 12 5 2 4 0 3 26 
Difference 3.0 - 4.99 inches 6 8 4 3 2 7 30 
 5.0 + inches 10 7 5 6 3 7 38 
 Total 29 23 12 15 8 19 106 
         

Chi-Square Statistic 15.29       
Probability  0.431       
         
   Physician     
  A B C D E Others Total 
Sitting < 15 Degrees 9 7 3 4 3 2 28 
Flexion 15-29 Degrees 17 10 8 11 7 14 67 
Difference 30+ Degrees 6 7 2 3 3 6 27 
 Total 32 24 13 18 13 22 122 
         

Chi-Square Statistic 5.426       
Probability  0.861       
         
   Physician     
  A B C D E Others Total 
 <= 0 Degrees 7 2 3 3 3 6 24 
Supine 1 - 4 Degrees 5 11 7 4 4 7 38 
Extension 5 - 8 Degrees 15 7 3 4 2 5 36 
Difference 9+ Degrees 5 4 0 6 4 4 23 
 Total 32 24 13 17 13 22 121 
         

Chi-Square Statistic 19.910       
Probability  0.175       
         
   Physician     
  A B C D E Others Total 
Supine < 15 Degrees 9 6 1 3 2 2 23 
Flexion 15-29 Degrees 11 14 10 6 7 12 60 
Difference 30+ Degrees 12 4 1 9 4 8 38 
 Total 32 24 12 18 13 22 121 
         

Chi-Square Statistic 15.82       
Probability  0.105       
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TABLE 8: Frequency Tables for the Length of Stay Variable and the Outcome Variables 
 

   Length of Stay 
  5 or less 6-10' 11-15' 15+ Total 
 0 or negative 4 8 0 0 12 
Girth 0.1 - 2.99 inches 8 16 1 1 26 
Difference 3.0 - 4.99 inches 8 18 4 0 30 
 5.0 + inches 14 19 2 3 38 
 Total 34 61 7 4 106 
       

Chi-Square Statistic 7.764     
Probability  0.558     
       
   Length of Stay 
  5 or less 6-10' 11-15' 15+ Total 
Sitting < 15 Degrees 16 10 2 0 28 
Flexion 15-29 Degrees 16 47 2 2 67 
Difference 30+ Degrees 3 12 9 3 27 
 Total 35 69 13 5 122 
       

Chi-Square Statistic 38.034     
Probability  0.000     
       
   Length of Stay 
  5 or less 6-10' 11-15' 15+ Total 
 <= 0 Degrees 9 12 3 0 24 
Supine 1 - 4 Degrees 8 27 3 0 38 
Extension 5 - 8 Degrees 11 17 5 3 36 
Difference 9+ Degrees 7 12 2 2 23 
 Total 35 68 13 5 121 
       

Chi-Square Statistic 9.750     
Probability  0.371     
       
   Length of Stay 
  5 or less 6-10' 11-15' 15+ Total 
Supine < 15 Degrees 11 12 0 0 23 
Flexion 15-29 Degrees 17 37 5 1 60 
Difference 30+ Degrees 6 20 8 4 38 
 Total 34 69 13 5 121 
       
Chi-Square Statistic 17.833     
Probability  0.007     
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TABLE 9: Frequency Tables for the Pain Variable and the Outcome Variables  
 

   DCScore (0 -10 basis) 
  0-4 5+ Total 
 0 or negative 7 2 9 
Girth 0.1 - 2.99 inches 19 6 25 
Difference 3.0 - 4.99 inches 26 4 30 
 5.0 + inches 25 13 38 
 Total 77 25 102 
     
Chi-Square Statistic 3.987   
Probability  0.263   
     
   DCScore (0 -10 basis) 
  0-4 5+ Total 
Sitting < 15 Degrees 17 9 26 
Flexion 15-29 Degrees 49 17 66 
Difference 30+ Degrees 23 3 26 
 Total 89 29 118 
     
Chi-Square Statistic 3.848   
Probability  0.146   
     
   DCScore (0 -10 basis) 
  0-4 5+ Total 
 <= 0 Degrees 18 6 24 
Supine 1 - 4 Degrees 24 11 35 
Extension 5 - 8 Degrees 29 6 35 
Difference 9+ Degrees 18 5 23 
 Total 89 28 117 
     
Chi-Square Statistic 2.042   
Probability  0.564   
     
   DCScore (0 -10 basis) 
  0-4 5+ Total 
Supine < 15 Degrees 12 10 22 
Flexion 15-29 Degrees 43 15 58 
Difference 30+ Degrees 33 4 37 
 Total 88 29 117 
     
Chi-Square Statistic 8.953   
Probability  0.011   
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TABLE 10a: X-Bar Control Limits and Specification Limits 

of the Difference Variables 

 
Variable          UCL LCL USL LSL___ 

DifGirth               7.909     -1.158     8.042  -1.292   

DifSupExt      10.487     -2.338   10.677  -2.529    

DifSupFlex      38.697       6.583    39.173    6.107   

DifSitFlex      34.460       8.248    34.848   7.859  

 
 

TABLE 10b: R Control Limits and Specification Limits  

of the Difference Variables 

 
Variable          UCL LCL USL LSL___ 

DifGirth               16.610         0      18.510  1.249   

DifSupExt        23.496         0     26.184  1.768    

DifSupFlex        58.830         0     65.562  4.427   

DifSitFlex        48.018         0     53.514  3.613  
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Figure 1: X-Bar Chart for Supine Extension Difference
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Figure 2: R-Chart for Supine Extension Difference
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 Figure 3: X-bar Chart for Supine Flexion Difference 
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 Figure 4: R-Chart for Supine Flexion Differences 
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  Figure 5: X-bar Chart for Sitting Flexion Differences 
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 Figure 6: R-Chart for Sitting Flexion Differences 
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Figure 7: X-bar Chart for Girth Differences
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Figure 8: R-Chart for Girth Differences
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Figure 9: Revised X-Bar Chart for Girth 
Di Diff Difference Differences 
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Figure 10: Revised R-Chart for Girth Difference 
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Appendix: Relative Frequency Tables 

TABLE 5a: Frequency Tables for the Age Variable and the Outcome Variables 

   Age    

  under 60 60's 70's 80+ Total 

 0 or negative 0.0094 0.0849 0.0189 0.0000 0.1132 

Girth 0.1 - 2.99 inches 0.0283 0.0472 0.1321 0.0377 0.2453 

Difference 3.0 - 4.99 inches 0.0377 0.0849 0.1038 0.0566 0.2830 

 5.0 + inches 0.0472 0.1132 0.1604 0.0377 0.3585 

 Total 0.1226 0.3302 0.4151 0.1321 1.0000 

       

Chi-Square Statistic 14.159     

Probability  0.117     

       

   Age    

  under 60 60's 70's 80+ Total 

Sitting < 15 Degrees 0.0164 0.0984 0.0738 0.0410 0.2295 

Flexion 15-29 Degrees 0.0820 0.1475 0.2459 0.0738 0.5492 

Difference 30+ Degrees 0.0246 0.0574 0.1148 0.0246 0.2213 

 Total 0.1230 0.3033 0.4344 0.1393 1.0000 

       

Chi-Square Statistic 4.665     

Probability  0.587     

       

   Age    

  under 60 60's 70's 80+ Total 

 <= 0 Degrees 0.0331 0.0165 0.1074 0.0413 0.1983 

Supine 1 - 4 Degrees 0.0413 0.1322 0.1074 0.0331 0.3140 

Extension 5 - 8 Degrees 0.0165 0.0992 0.1570 0.0248 0.2975 

Difference 9+ Degrees 0.0331 0.0579 0.0579 0.0413 0.1901 

 Total 0.1240 0.3058 0.4298 0.1405 1.0000 

       

Chi-Square Statistic 13.770     

Probability  0.131     

       

   Age    

  under 60 60's 70's 80+ Total 

Supine < 15 Degrees 0.0165 0.0744 0.0826 0.0165 0.1901 

Flexion 15-29 Degrees 0.0909 0.1405 0.1983 0.0661 0.4959 

Difference 30+ Degrees 0.0165 0.0909 0.1570 0.0496 0.3140 

 Total 0.1240 0.3058 0.4380 0.1322 1.0000 

       

Chi-Square Statistic 5.28     

Probability  0.508     
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TABLE 6a: Frequency Tables for the Sex Variable and the Outcome Variables 
 

   Sex  
  Female Male Total 
 0 or negative 0.0849 0.0283 0.1132 
Girth 0.1 - 2.99 inches 0.1981 0.0472 0.2453 
Difference 3.0 - 4.99 inches 0.1698 0.1132 0.2830 
 5.0 + inches 0.2736 0.0849 0.3585 
 Total 0.7264 0.2736 1.0000 
     
Chi-Square Statistic 3.568   
Probability  0.312   
     
   Sex  
  Female Male Total 
Sitting < 15 Degrees 0.1721 0.0574 0.2295 
Flexion 15-29 Degrees 0.3525 0.1967 0.5492 
Difference 30+ Degrees 0.1803 0.0410 0.2213 
 Total 0.7049 0.2951 1.0000 
     
Chi-Square Statistic 3.125   
Probability  0.21   
     
   Sex  
  Female Male Total 
 <= 0 Degrees 0.1488 0.0496 0.1983 
Supine 1 - 4 Degrees 0.2066 0.1074 0.3140 
Extension 5 - 8 Degrees 0.2231 0.0744 0.2975 
Difference 9+ Degrees 0.1240 0.0661 0.1901 
 Total 0.7025 0.2975 1.0000 
     
Chi-Square Statistic 1.288   
Probability  0.732   
     
   Sex  
  Female Male Total 
Supine < 15 Degrees 0.1488 0.0413 0.1901 
Flexion 15-29 Degrees 0.3554 0.1405 0.4959 
Difference 30+ Degrees 0.1983 0.1157 0.3140 
 Total 0.7025 0.2975 1.0000 
     
Chi-Square Statistic 1.678   
Probability  0.432   
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TABLE 7a: Frequency Tables for the Physician Variable and the Outcome Variables 
 

   Physician     
  A B C D E Others Total 
 0 or negative 0.0094 0.0283 0.0094 0.0189 0.0283 0.0189 0.1132 
Girth 0.1 - 2.99 inches 0.1132 0.0472 0.0189 0.0377 0.0000 0.0283 0.2453 
Difference 3.0 - 4.99 inches 0.0566 0.0755 0.0377 0.0283 0.0189 0.0660 0.2830 
 5.0 + inches 0.0943 0.0660 0.0472 0.0566 0.0283 0.0660 0.3585 
 Total 0.2736 0.2170 0.1132 0.1415 0.0755 0.1792 1.0000 
         

Chi-Square Statistic 15.29       
Probability  0.431       
         
   Physician     
  A B C D E Others Total 
Sitting < 15 Degrees 0.0738 0.0574 0.0246 0.0328 0.0246 0.0164 0.2295 
Flexion 15-29 Degrees 0.1393 0.0820 0.0656 0.0902 0.0574 0.1148 0.5492 
Difference 30+ Degrees 0.0492 0.0574 0.0164 0.0246 0.0246 0.0492 0.2213 
 Total 0.2623 0.1967 0.1066 0.1475 0.1066 0.1803 1.0000 
         

Chi-Square Statistic 5.426       
Probability  0.861       
         
   Physician     
  A B C D E Others Total 
 <= 0 Degrees 0.0579 0.0165 0.0248 0.0248 0.0248 0.0496 0.1983 
Supine 1 - 4 Degrees 0.0413 0.0909 0.0579 0.0331 0.0331 0.0579 0.3140 
Extension 5 - 8 Degrees 0.1240 0.0579 0.0248 0.0331 0.0165 0.0413 0.2975 
Difference 9+ Degrees 0.0413 0.0331 0.0000 0.0496 0.0331 0.0331 0.1901 
 Total 0.2645 0.1983 0.1074 0.1405 0.1074 0.1818 1.0000 
         

Chi-Square Statistic 19.910       
Probability  0.175       
         
   Physician     
  A B C D E Others Total 
Supine < 15 Degrees 0.0744 0.0496 0.0083 0.0248 0.0165 0.0165 0.1901 
Flexion 15-29 Degrees 0.0909 0.1157 0.0826 0.0496 0.0579 0.0992 0.4959 
Difference 30+ Degrees 0.0992 0.0331 0.0083 0.0744 0.0331 0.0661 0.3140 
 Total 0.2645 0.1983 0.0992 0.1488 0.1074 0.1818 1.0000 
         

Chi-Square Statistic 15.82       
Probability  0.105       
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TABLE 8a: Frequency Tables for the Length of Stay Variable and the Outcome Variables 
 

   Length of Stay   
  5 or less 6-10' 11-15' 15+ Total 
 0 or negative 0.0377 0.0755 0.0000 0.0000 0.1132 
Girth 0.1 - 2.99 inches 0.0755 0.1509 0.0094 0.0094 0.2453 
Difference 3.0 - 4.99 inches 0.0755 0.1698 0.0377 0.0000 0.2830 
 5.0 + inches 0.1321 0.1792 0.0189 0.0283 0.3585 
 Total 0.3208 0.5755 0.0660 0.0377 1.0000 
       

Chi-Square Statistic 7.764     
Probability  0.558     
       
   Length of Stay   
  5 or less 6-10' 11-15' 15+ Total 
Sitting < 15 Degrees 0.1311 0.0820 0.0164 0.0000 0.2295 
Flexion 15-29 Degrees 0.1311 0.3852 0.0164 0.0164 0.5492 
Difference 30+ Degrees 0.0246 0.0984 0.0738 0.0246 0.2213 
 Total 0.2869 0.5656 0.1066 0.0410 1.0000 
       

Chi-Square Statistic 38.034     
Probability  0.000     
       
   Length of Stay   
  5 or less 6-10' 11-15' 15+ Total 
 <= 0 Degrees 0.0744 0.0992 0.0248 0.0000 0.1983 
Supine 1 - 4 Degrees 0.0661 0.2231 0.0248 0.0000 0.3140 
Extension 5 - 8 Degrees 0.0909 0.1405 0.0413 0.0248 0.2975 
Difference 9+ Degrees 0.0579 0.0992 0.0165 0.0165 0.1901 
 Total 0.2893 0.5620 0.1074 0.0413 1.0000 
       

Chi-Square Statistic 9.750     
Probability  0.371     
       
   Length of Stay   
  5 or less 6-10' 11-15' 15+ Total 
Supine < 15 Degrees 0.0909 0.0992 0.0000 0.0000 0.1901 
Flexion 15-29 Degrees 0.1405 0.3058 0.0413 0.0083 0.4959 
Difference 30+ Degrees 0.0496 0.1653 0.0661 0.0331 0.3140 
 Total 0.2810 0.5702 0.1074 0.0413 1.0000 
       
Chi-Square Statistic 17.833     
Probability  0.007     
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TABLE 9a: Frequency Tables for the Pain Variable and the Outcome Variables 
 

   DCScore (0 -10 basis) 
  0-4 5+ Total 
 0 or negative 0.0686 0.0196 0.0882 
Girth 0.1 - 2.99 inches 0.1863 0.0588 0.2451 
Difference 3.0 - 4.99 inches 0.2549 0.0392 0.2941 
 5.0 + inches 0.2451 0.1275 0.3725 
 Total 0.7549 0.2451 1.0000 
     
Chi-Square Statistic 3.987   
Probability  0.263   
     
   DCScore (0 -10 basis) 
  0-4 5+ Total 
Sitting < 15 Degrees 0.1441 0.0763 0.2203 
Flexion 15-29 Degrees 0.4153 0.1441 0.5593 
Difference 30+ Degrees 0.1949 0.0254 0.2203 
 Total 0.7542 0.2458 1.0000 
     
Chi-Square Statistic 3.848   
Probability  0.146   
     
   DCScore (0 -10 basis) 
  0-4 5+ Total 
 <= 0 Degrees 0.1538 0.0513 0.2051 
Supine 1 - 4 Degrees 0.2051 0.0940 0.2991 
Extension 5 - 8 Degrees 0.2479 0.0513 0.2991 
Difference 9+ Degrees 0.1538 0.0427 0.1966 
 Total 0.7607 0.2393 1.0000 
     
Chi-Square Statistic 2.042   
Probability  0.564   
     
   DCScore (0 -10 basis) 
  0-4 5+ Total 
Supine < 15 Degrees 0.1026 0.0855 0.1880 
Flexion 15-29 Degrees 0.3675 0.1282 0.4957 
Difference 30+ Degrees 0.2821 0.0342 0.3162 
 Total 0.7521 0.2479 1.0000 
     
Chi-Square Statistic 8.953   
Probability  0.011   
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